40th International Mathematical Olympiad Bucharest, Romania Day I 9 a.m. - 1:30 p.m. July 16, 1999

- 1. Find all finite sets S of at least three points in the plane such that for all distinct points A, B in S, the perpendicular bisector of AB is an axis of symmetry for S.
- 2. Let $n \ge 2$ be a fixed integer.
 - (a) Find the least constant C such that for all nonnegative real numbers x_1, \ldots, x_n ,

$$\sum_{1 \le i < j \le n} x_i x_j (x_i^2 + x_j^2) \le C \left(\sum_{i=1}^n x_i\right)^4.$$

- (b) Determine when equality occurs for this value of C.
- 3. We are given an $n \times n$ square board, with n even. Two distinct squares of the board are said to be adjacent if they share a common side. (A square is *not* adjacent to itself.) Find the minimum number of squares that can be marked so that every square (marked or not) is adjacent to at least one marked square.

40th International Mathematical Olympiad Bucharest, Romania Day II 9 a.m. - 1:30 p.m. July 17, 1999

- 4. Find all pairs (n, p) of positive integers such that
 - p is prime;
 - $n \leq 2p;$
 - $(p-1)^n + 1$ is divisible by n^{p-1} .
- 5. The circles Γ_1 and Γ_2 lie inside circle Γ , and are tangent to it at M and N, respectively. It is given that Γ_1 passes through the center of Γ_2 . The common chord of Γ_1 and Γ_2 , when extended, meets Γ at A and B. The lines MA and MB meet Γ_1 again at C and D. Prove that the line CD is tangent to Γ_2 .
- 6. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1.$$

for all $x, y \in \mathbb{R}$.